Merten USB Devices Driver



-->

This release brings the 1st Generation Scarlett Range, iTrack Solo and Saffire 6 USB 2.0 up to the same driver versions as the 2nd and 3rd Generation Scarlett ranges and the Clarett USB range. 1st Generation Scarlett 6i6, 8i6, 18i6, 18i8 and 18i20 continue to be supported by Scarlett Mix Control 1.10. To install, open Device Manager Universal Serial Bus controllers right-click USB Root Hub (USB 3.0) Uninstall Device reboot PC. To re-install a specific device, navigate to the above but select Properties Driver Update Driver to install from your PC.

For certain Universal Serial Bus (USB) devices, such as devices that are accessed by only a single application, you can install WinUSB (Winusb.sys) in the device's kernel-mode stack as the USB device's function driver instead of implementing a driver.

This topic contains these sections:

Automatic installation of WinUSB without an INF file

As an OEM or independent hardware vendor (IHV), you can build your device so that the Winusb.sys gets installed automatically on Windows 8 and later versions of the operating system. Such a device is called a WinUSB device and does not require you to write a custom INF file that references in-box Winusb.inf.

When you connect a WinUSB device, the system reads device information and loads Winusb.sys automatically.

For more information, see WinUSB Device.

Installing WinUSB by specifying the system-provided device class

When you connect your device, you might notice that Windows loads Winusb.sys automatically (if the IHV has defined the device as a WinUSB Device). Otherwise follow these instructions to load the driver:

  1. Plug in your device to the host system.
  2. Open Device Manager and locate the device.
  3. Select and hold (or right-click) the device and select Update driver software... from the context menu.
  4. In the wizard, select Browse my computer for driver software.
  5. Select Let me pick from a list of device drivers on my computer.
  6. From the list of device classes, select Universal Serial Bus devices.
  7. The wizard displays WinUsb Device. Select it to load the driver.

If Universal Serial Bus devices does not appear in the list of device classes, then you need to install the driver by using a custom INF.The preceding procedure does not add a device interface GUID for an app (UWP app or Windows desktop app) to access the device. You must add the GUID manually by following this procedure.

  1. Load the driver as described in the preceding procedure.

  2. Generate a device interface GUID for your device, by using a tool such as guidgen.exe.

  3. Find the registry key for the device under this key:

    HKEY_LOCAL_MACHINESYSTEMCurrentControlSetEnumUSB<VID_vvvv&PID_pppp>

  4. Under the Device Parameters key, add a String registry entry named DeviceInterfaceGUID or a Multi-String entry named DeviceInterfaceGUIDs. Set the value to the GUID you generated in step 2.

  5. Disconnect the device from the system and reconnect it to the same physical port.Note If you change the physical port then you must repeat steps 1 through 4.

Writing a custom INF for WinUSB installation

As part of the driver package, you provide an .inf file that installs Winusb.sys as the function driver for the USB device.

The following example .inf file shows WinUSB installation for most USB devices with some modifications, such as changing USB_Install in section names to an appropriate DDInstall value. You should also change the version, manufacturer, and model sections as necessary. For example, provide an appropriate manufacture's name, the name of your signed catalog file, the correct device class, and the vendor identifier (VID) and product identifier (PID) for the device.

Also notice that the setup class is set to 'USBDevice'. Vendors can use the 'USBDevice' setup class for devices that do not belong to another class and are not USB host controllers or hubs.

If you are installing WinUSB as the function driver for one of the functions in a USB composite device, you must provide the hardware ID that is associated with the function, in the INF. You can obtain the hardware ID for the function from the properties of the devnode in Device Manager. The hardware ID string format is 'USBVID_vvvv&PID_pppp'.

Merten Usb Devices Driver Device

USB

The following INF installs WinUSB as the OSR USB FX2 board's function driver on a x64-based system.

Starting in Windows 10, version 1709, the Windows Driver Kit provides InfVerif.exe that you can use to test a driver INF file to make sure there are no syntax issues and the INF file is universal. We recommened that you provide a universal INF. For more information, see Using a Universal INF File.

Only include a ClassInstall32 section in a device INF file to install a new custom device setup class. INF files for devices in an installed class, whether a system-supplied device setup class or a custom class, must not include a ClassInstall32 section.

Except for device-specific values and several issues that are noted in the following list, you can use these sections and directives to install WinUSB for any USB device. These list items describe the Includes and Directives in the preceding .inf file.

Merten USB Devices Driver
  • USB_Install: The Include and Needs directives in the USB_Install section are required for installing WinUSB. You should not modify these directives.

  • USB_Install.Services: The Include directive in the USB_Install.Services section includes the system-supplied .inf for WinUSB (WinUSB.inf). This .inf file is installed by the WinUSB co-installer if it isn't already on the target system. The Needs directive specifies the section within WinUSB.inf that contains information required to install Winusb.sys as the device's function driver. You should not modify these directives.Note Because Windows XP doesn't provide WinUSB.inf, the file must either be copied to Windows XP systems by the co-installer, or you should provide a separate decorated section for Windows XP.

  • USB_Install.HW: This section is the key in the .inf file. It specifies the device interface globally unique identifier (GUID) for your device. The AddReg directive sets the specified interface GUID in a standard registry value. When Winusb.sys is loaded as the device's function driver, it reads the registry value DeviceInterfaceGUIDs key and uses the specified GUID to represent the device interface. You should replace the GUID in this example with one that you create specifically for your device. If the protocols for the device change, create a new device interface GUID.

    Note User-mode software must call SetupDiGetClassDevs to enumerate the registered device interfaces that are associated with one of the device interface classes specified under the DeviceInterfaceGUIDs key. SetupDiGetClassDevs returns the device handle for the device that the user-mode software must then pass to the WinUsb_Initialize routine to obtain a WinUSB handle for the device interface. For more info about these routines, see How to Access a USB Device by Using WinUSB Functions.

The following INF installs WinUSB as the OSR USB FX2 board's function driver on a x64-based system. The example shows INF with WDF coinstallers.

  • USB_Install.CoInstallers: This section, which includes the referenced AddReg and CopyFiles sections, contains data and instructions to install the WinUSB and KMDF co-installers and associate them with the device. Most USB devices can use these sections and directives without modification.

  • The x86-based and x64-based versions of Windows have separate co-installers.

    Note Each co-installer has free and checked versions. Use the free version to install WinUSB on free builds of Windows, including all retail versions. Use the checked version (with the '_chk' suffix) to install WinUSB on checked builds of Windows.

Driver

Each time Winusb.sys loads, it registers a device interface that has the device interface classes that are specified in the registry under the DeviceInterfaceGUIDs key.

Devices

Note If you use the redistributable WinUSB package for Windows XP or Windows Server 2003, make sure that you don't uninstall WinUSB in your uninstall packages. Other USB devices might be using WinUSB, so its binaries must remain in the shared folder.

How to create a driver package that installs Winusb.sys

To use WinUSB as the device's function driver, you create a driver package. The driver package must contain these files:

  • WinUSB co-installer (Winusbcoinstaller.dll)
  • KMDF co-installer (WdfcoinstallerXXX.dll)
  • An .inf file that installs Winusb.sys as the device's function driver. For more information, see Writing an .Inf File for WinUSB Installation.
  • A signed catalog file for the package. This file is required to install WinUSB on x64 versions of Windows starting with Vista.

Note Make sure that the driver package contents meet these requirements:

  • The KMDF and WinUSB co-installer files must be obtained from the same version of the Windows Driver Kit (WDK).
  • The co-installer files must be obtained from the latest version of the WDK, so that the driver supports all the latest Windows releases.
  • The contents of the driver package must be digitally signed with a Winqual release signature. For more info about how to create and test signed catalog files, see Kernel-Mode Code Signing Walkthrough on the Windows Dev Center - Hardware site.
  1. Download the Windows Driver Kit (WDK) and install it.

  2. Create a driver package folder on the machine that the USB device is connected to. For example, c:UsbDevice.

  3. Copy the WinUSB co-installer (WinusbcoinstallerX.dll) from the WinDDKBuildNumberredistwinusb folder to the driver package folder.

    The WinUSB co-installer (Winusbcoinstaller.dll) installs WinUSB on the target system, if necessary. The WDK includes three versions of the co-installer depending on the system architecture: x86-based, x64-based, and Itanium-based systems. They are all named WinusbcoinstallerX.dll and are located in the appropriate subdirectory in the WinDDKBuildNumberredistwinusb folder.

  4. Copy the KMDF co-installer (WdfcoinstallerXXX.dll) from the WinDDKBuildNumberredistwdf folder to the driver package folder.

    The KMDF co-installer (WdfcoinstallerXXX.dll) installs the correct version of KMDF on the target system, if necessary. The version of WinUSB co-installer must match the KMDF co-installer because KMDF-based client drivers, such as Winusb.sys, require the corresponding version of the KMDF framework to be installed properly on the system. For example, Winusbcoinstaller2.dll requires KMDF version 1.9, which is installed by Wdfcoinstaller01009.dll. The x86 and x64 versions of WdfcoinstallerXXX.dll are included with the WDK under the WinDDKBuildNumberredistwdf folder. The following table shows the WinUSB co-installer and the associated KMDF co-installer to use on the target system.

    Use this table to determine the WinUSB co-installer and the associated KMDF co-installer.

    WinUSB co-installerKMDF library versionKMDF co-installer
    Winusbcoinstaller.dllRequires KMDF version 1.5 or later

    Wdfcoinstaller01005.dll

    Wdfcoinstaller01007.dll

    Wdfcoinstaller01009.dll

    Winusbcoinstaller2.dllRequires KMDF version 1.9 or laterWdfcoinstaller01009.dll
    Winusbcoinstaller2.dllRequires KMDF version 1.11 or laterWdfCoInstaller01011.dll
  5. Write an .inf file that installs Winusb.sys as the function driver for the USB device.

  6. Create a signed catalog file for the package. This file is required to install WinUSB on x64 versions of Windows.

  7. Attach the USB device to your computer.

  8. Open Device Manager to install the driver. Follow the instructions on the Update Driver Software wizard and choose manual installation. You will need to provide the location of the driver package folder to complete the installation.

Merten

Related topics

WinUSB Architecture and Modules
Choosing a driver model for developing a USB client driver
How to Access a USB Device by Using WinUSB Functions
WinUSB Power Management
WinUSB Functions for Pipe Policy Modification
WinUSB Functions
WinUSB

-->

Universal Serial Bus (USB) provides an expandable, hot-pluggable Plug and Play serial interface that ensures a standard, low-cost connection for peripheral devices such as keyboards, mice, joysticks, printers, scanners, storage devices, modems, and video conferencing cameras. Migration to USB is recommended for all peripheral devices that use legacy ports such as PS/2, serial, and parallel ports.

Merten Usb Devices Driver Updater

The USB-IF is a Special Interest Groups (SIGs) that maintains the Official USB Specification, test specifications and tools.

Merten USB Devices Driver

Windows operating systems include native support for USB host controllers, hubs, and devices and systems that comply with the official USB specification. Windows also provides programming interfaces that you can use to develop device drivers and applications that communicate with a USB device.

Merten Usb Devices Driver Adapter

USB in WindowsWindows 10: What's new for USB

Overview of new features and improvements in USB in Windows 10.

USB FAQ

Frequently asked questions from driver developers about the USB stack and features that are supported in USB.

Microsoft OS Descriptors for USB Devices

Windows defines MS OS descriptors that allows better enumeration when connected to system running Windows operating system

Microsoft-provided USB driversUSB device-side drivers in Windows

A set of drivers for handling common function logic for USB devices.

USB host-side drivers in Windows

Microsoft provides a core stack of drivers that interoperate with devices that are connected to EHCI and xHCI controllers.

USB-IF device class drivers

Windows provides in-box device class drivers for many USB-IF approved device classes, audio, mass storage, and so on.

USB generic function driver–WinUSB

Windows provides Winusb.sys that can be loaded as a function driver for a custom device and a function of a composite device.

USB generic parent driver for composite devices–Usbccgp

Parent driver for USB devices with multiple functions. Usbccgp creates physical device objects (PDOs) for each of those functions. Those individual PDOs are managed by their respective USB function drivers, which could be the Winusb.sys driver or a USB device class driver.

WDF extension for developing USB drivers
  • USB connector manager class extension (UcmCx) reference
  • USB host controller (UCX) reference
  • USB function class extension (UFX) reference
Testing USB devices with Windows

Get information about the tools that you can use to test your USB hardware or software, capture traces of operations and other system events, and observe how the USB driver stack responds to a request sent by a client driver or an application.

Read an overview of tests in the Hardware Certification Kit that enable hardware vendors and device manufacturers to prepare their USB devices and host controllers for Windows Hardware Certification submission.

Other Resources for USB

Official USB Specification

Provides complete technical details for the USB protocol.

Microsoft Windows USB Core Team Blog

Check out posts written by the Microsoft USB Team. The blog focuses on the Windows USB driver stack that works with various USB Host controllers and USB hubs found in Windows PC. A useful resource for USB client driver developers and USB hardware designers understand the driver stack implementation, resolve common issues, and explain how to use tools for gathering traces and log files.

OSR Online Lists - ntdev

Discussion list managed by OSR Online for kernel-mode driver developers.

Windows Dev-Center for Hardware Development

Miscellaneous resources based on frequently asked questions from developers who are new to developing USB devices and drivers that work with Windows operating systems.

USB-related videos

UWP apps for USB devicesUnderstanding USB 3.0 in Windows 8Building great USB 3.0 devicesUSB Debugging Innovations in Windows 8 (Part I, II, & III)

USB hardware for learning

MUTT devices

MUTT and SuperMUTT devices and the accompanying software package are integrated into the HCK suite of USB tests. They provide automated testing that can be used during the development cycle of USB controllers, devices and systems, especially stress testing.

OSR USB FX2 Learning Kit

If you are new to USB driver development. The kit is the most suitable to study USB samples included in this documentation set. You can get the learning kit from OSR Online Store.

Write a USB client driver (KMDF, UMDF)

Introduces you to USB driver development. Provides information about choosing the most appropriate model for providing a USB driver for your device. This section also includes tutorials about writing your first user-mode and kernel-mode USB drivers by using the USB templates included with Microsoft Visual Studio.

Write a USB host controller driver

If you are developing an xHCI host controller that is not compliant with the specification or developing a custom non-xHCI hardware (such as a virtual host controller), you can write a host controller driver that communicates with UCX. For example, consider a wireless dock that supports USB devices. The PC communicates with USB devices through the wireless dock by using USB over TCP as a transport.

  • USB host controller (UCX) reference
Write a function controller driver for a USB device

You can develop a controller driver that handles all USB data transfers and commands sent by the host to the device. This driver communicates with the Microsoft-provided USB function controller extension (UFX).

USB function class extension (UFX) reference

Write a USB Type-C connector driver

Windows 10 introduces support for the new USB connector: USB Type-C. You can write a driver for the connector that communicates with the Microsoft-provided class extension module: UcmCx to handle scenarios related to Type-C connectors such as, which ports support Type-C, which ports support power delivery.

USB connector manager class extension (UcmCx) reference

Write a USB dual-role controller driver

USB Dual Role controllers are now supported in Windows 10. Windows includes in-box client drivers for ChipIdea and Synopsys controllers. For other controllers, Microsoft provides a set of programming interfaces that allow the dual-role class extension (UrsCx) and its client driver to communicate with each other to handle the role-switching capability of a dual-role controller.

For more information about this feature, see:

USB dual-role controller driver programming reference

Write a USB driver for emulated devices

Windows 10 introduces support for emulated devices. Now you can develop an emulated Universal Serial Bus (USB) host controller driver and a connected virtual USB device. Both components are combined into a single KMDF driver that communicates with the Microsoft-provided USB device emulation class extension (UdeCx).

Emulated USB host controller driver programming reference

Write a UWP app

Provides step-by-step instructions about implementing USB features in a UWP app. To write such an app for a USB device you need Visual Studio and Microsoft Windows Software Development Kit (SDK) .

Write a Windows desktop app

Describes how an application can call WinUSB Functions to communicate with a USB device.

WinUSB functions

Common programming scenarios

List of common tasks that a driver or an app performs in order to communicate with a USB device. Get quick info about the programming interfaces you need for each task.

USB samples

Development tools

Download kits and tools for Windows